June 13, 2024
Health

Nutraceutical blends predict enhanced health via microbiota reshaping improving cytokines and life quality: a Brazilian double-blind randomized trial


  • Swarte, J. C. et al. Health-related quality of life is linked to the gut microbiome in kidney transplant recipients. Nat. Commun. 14, 7968 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neil, A. et al. A randomised, controlled trial of a dietary intervention for adults with major depression (the “SMILES” trial): Study protocol. BMC Psychiatry 13, 114 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brushett, S. et al. Healthy diets positively associated with health-related quality of life in children and adolescents from low socioeconomic areas: Findings from the Greek Food Aid Program, DIATROFI. Nutrition 121, 112367 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Dalmases, M. et al. Impact of sleep health on self-perceived health status. Sci. Rep. 9, 7284 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pano, O. et al. Healthy diet, depression and quality of life: A narrative review of biological mechanisms and primary prevention opportunities. WJP 11, 997–1016 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zapalac, K., Miller, M., Champagne, F. A., Schnyer, D. M. & Baird, B. The effects of physical activity on sleep architecture and mood in naturalistic environments. Sci. Rep. 14, 5637 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, B. et al. Genetic and non-genetic factors associated with the phenotype of exceptional longevity & normal cognition. Sci. Rep. 10, 19140 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Streimikiene, D. Environmental indicators for the assessment of quality of life. Intellect. Econ. 9, 67–79 (2015).


    Google Scholar
     

  • Friedman, S. M. Lifestyle (medicine) and healthy aging. Clin. Geriatr. Med. 36, 645–653 (2020).

    PubMed 

    Google Scholar
     

  • Potter, G. D. M. et al. Circadian rhythm and sleep disruption: Causes, metabolic consequences, and countermeasures. Endocr. Rev. 37, 584–608 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caddick, Z. A., Gregory, K., Arsintescu, L. & Flynn-Evans, E. E. A review of the environmental parameters necessary for an optimal sleep environment. Build. Environ. 132, 11–20 (2018).


    Google Scholar
     

  • Rafique, N. et al. Effects of mobile use on subjective sleep quality. NSS 12, 357–364 (2020).


    Google Scholar
     

  • Zuraikat, F. M., Wood, R. A., Barragán, R. & St-Onge, M.-P. Sleep and diet: Mounting evidence of a cyclical relationship. Annu. Rev. Nutr. 41, 309–332 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karbasi, S. et al. The relationship between dietary patterns and insomnia in young women. Neuropsychopharm. Rep. 43, 228–238 (2023).


    Google Scholar
     

  • Smith, R. P. et al. Gut microbiome diversity is associated with sleep physiology in humans. PLoS ONE 14, e0222394 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matenchuk, B. A., Mandhane, P. J. & Kozyrskyj, A. L. Sleep, circadian rhythm, and gut microbiota. Sleep Med. Rev. 53, 101340 (2020).

    PubMed 

    Google Scholar
     

  • Wu, J. et al. Associations between gut microbiota and sleep: A two-sample, bidirectional Mendelian randomization study. Front. Microbiol. 14, 1236847 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayer, E. A. Gut feelings: The emerging biology of gut–brain communication. Nat. Rev. Neurosci 12, 453–466 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Rusch, J. A., Layden, B. T. & Dugas, L. R. Signalling cognition: The gut microbiota and hypothalamic-pituitary-adrenal axis. Front. Endocrinol. 14, 1130689 (2023).


    Google Scholar
     

  • Irwin, M. R. & Opp, M. R. Sleep health: Reciprocal regulation of sleep and innate immunity. Neuropsychopharmacology 42, 129–155 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Chu, C. et al. The microbiota regulate neuronal function and fear extinction learning. Nature 574, 543–548 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vgontzas, A. N. et al. IL-6 and its circadian secretion in humans. Neuroimmunomodulation 12, 131–140 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • O’Byrne, N. A., Yuen, F., Butt, W. Z. & Liu, P. Y. Sleep and circadian regulation of cortisol: A short review. Curr. Opin. Endocr. Metab. Res. 18, 178–186 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lihua, M., Kaipeng, Z., Xiyan, M., Yaowen, C. & Tao, Z. Systematic review and meta-analysis of stress management intervention studies in patients with metabolic syndrome combined with psychological symptoms. Medicine 102, e35558 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation. Mol. Psychiatry 26, 6277–6292 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 1693, 128–133 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magzal, F. et al. Associations between fecal short-chain fatty acids and sleep continuity in older adults with insomnia symptoms. Sci. Rep. 11, 4052 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neroni, B. et al. Relationship between sleep disorders and gut dysbiosis: What affects what?. Sleep Med. 87, 1–7 (2021).

    PubMed 

    Google Scholar
     

  • Grosicki, G. J., Riemann, B. L., Flatt, A. A., Valentino, T. & Lustgarten, M. S. Self-reported sleep quality is associated with gut microbiome composition in young, healthy individuals: A pilot study. Sleep Med. 73, 76–81 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulder, D., Aarts, E., Arias Vasquez, A. & Bloemendaal, M. A systematic review exploring the association between the human gut microbiota and brain connectivity in health and disease. Mol. Psychiatry https://doi.org/10.1038/s41380-023-02146-4 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker, B. J., Wearsch, P. A., Veloo, A. C. M. & Rodriguez-Palacios, A. The genus alistipes: Gut bacteria with emerging implications to inflammation, cancer, and mental health. Front. Immunol. 11, 906 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oriach, C. S., Robertson, R. C., Stanton, C., Cryan, J. F. & Dinan, T. G. Food for thought: The role of nutrition in the microbiota-gut–brain axis. Clin. Nutr. Exp. 6, 25–38 (2016).


    Google Scholar
     

  • Romaní-Pérez, M. et al. The microbiota and the gut-brain axis in controlling food intake and energy homeostasis. IJMS 22, 5830 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thakare, V. N. et al. Therapeutic potential of silymarin in chronic unpredictable mild stress induced depressive-like behavior in mice. J. Psychopharmacol. 32, 223–235 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Ranjan, S. & Gautam, A. Pharmaceutical prospects of Silymarin for the treatment of neurological patients: An updated insight. Front. Neurosci. 17, 1159806 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, P. et al. Silibinin attenuates cognitive deficits and decreases of dopamine and serotonin induced by repeated methamphetamine treatment. Behav. Brain Res. 207, 387–393 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eby, G. A. & Eby, K. L. Magnesium for treatment-resistant depression: A review and hypothesis. Med. Hypotheses 74, 649–660 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Sarris, J. et al. Nutritional medicine as mainstream in psychiatry. Lancet Psychiatry 2, 271–274 (2015).

    PubMed 

    Google Scholar
     

  • Siodłak, D., Nowak, G. & Mlyniec, K. Interaction between zinc, the GPR39 zinc receptor and the serotonergic system in depression. Brain Res. Bull. https://doi.org/10.1016/j.brainresbull.2021.02.003 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ansari, N. et al. Comparison of RANTES expression in Crohn’s disease and ulcerative colitis: An aid in the differential diagnosis?. J. Clin. Pathol. 59, 1066–1072 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haarhuis, J. E., Kardinaal, A. & Kortman, G. A. M. Probiotics, prebiotics and postbiotics for better sleep quality: A narrative review. Benef. Microbes 13, 169–182 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Nehmi-Filho, V. et al. Novel Nutraceutical (silymarin, yeast β-glucan, prebiotics, and minerals) shifts gut microbiota and restores large intestine histology of diet-induced metabolic syndrome mice. J. Funct. Foods 107, 105671 (2023).

    CAS 

    Google Scholar
     

  • Johnson, A. A., English, B. W., Shokhirev, M. N., Sinclair, D. A. & Cuellar, T. L. Human age reversal: Fact or fiction?. Aging Cell 21, e13664 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khawar, M. M. et al. The gut-brain axis in autoimmune diseases: Emerging insights and therapeutic implications. Cureus https://doi.org/10.7759/cureus.48655 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sperry, S. D., Scully, I. D., Gramzow, R. H. & Jorgensen, R. S. Sleep duration and waist circumference in adults: A meta-analysis. Sleep 38, 1269–1276 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidell, J. C. Waist circumference and waist/hip ratio in relation to all-cause mortality, cancer and sleep apnea. Eur. J. Clin. Nutr. 64, 35–41 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Huxley, R., Mendis, S., Zheleznyakov, E., Reddy, S. & Chan, J. Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk: A review of the literature. Eur. J. Clin. Nutr. 64, 16–22 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, F. et al. Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) increase bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population. Sci. Rep. 7, 11789 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puddu, A., Sanguineti, R., Montecucco, F. & Viviani, G. L. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediat. Inflamm. 2014, 1–9 (2014).


    Google Scholar
     

  • Dall’Oglio, F., Milani, M. & Micali, G. Effects of oral supplementation with FOS and GOS prebiotics in women with adult acne: The “S.O. Sweet” study: A proof-of-concept pilot trial. CCID 11, 445–449 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hachul, A. C. L. et al. Oligofructose supplementation (10%) during pregnancy and lactation does not change the inflammatory effect of concurrent trans fatty acid ingestion on 21-day-old offspring. Lipids Health Dis. 12, 59 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kakazua, V. A., Pinto, R. Z. & Dokkedal-Silva, V. Sleep quality, body mass index and waist-to-hip ratio in older adults. Phys. Occup. Ther. Geriatr. 40, 150–160 (2022).


    Google Scholar
     

  • Sun, D.-Q. et al. MAFLD and risk of CKD. Metabolism 115, 154433 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Santamarina, A. B. et al. The symbiotic effect of a new nutraceutical with yeast β-glucan, prebiotics, minerals, and silybum marianum (Silymarin) for recovering metabolic homeostasis via Pgc-1α, Il-6, and Il-10 gene expression in a type-2 diabetes obesity model. Antioxidants 11, 447 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chasens, E. R. et al. Sleep and metabolic syndrome. Nurs. Clin. N. Am. 56, 203–217 (2021).


    Google Scholar
     

  • Muscogiuri, G. et al. Obesity and sleep disturbance: The chicken or the egg?. Crit. Rev. Food Sci. Nutr. 59, 2158–2165 (2019).

    PubMed 

    Google Scholar
     

  • Eun, Y. G. et al. Short-term effect of multilevel surgery on adipokines and pro-inflammatory cytokines in patients with obstructive sleep apnea. Acta Oto-Laryngol. 130, 1394–1398 (2010).

    CAS 

    Google Scholar
     

  • Unal, Y., Ozturk, D. A., Tosun, K. & Kutlu, G. Association between obstructive sleep apnea syndrome and waist-to-height ratio. Sleep Breath 23, 523–529 (2019).

    PubMed 

    Google Scholar
     

  • Valmorbida, A., Longo, G. Z., Nascimento, G. M., de Oliveira, L. L. & de Moraes Trindade, E. B. S. Association between cytokine levels and anthropometric measurements: A population-based study. Br. J. Nutr. 129(7), 1119–1126 (2023).

    CAS 

    Google Scholar
     

  • Sookoian, S. & Pirola, C. J. Obstructive sleep apnea is associated with fatty liver and abnormal liver enzymes: A meta-analysis. Obes. Surg. 23, 1815–1825 (2013).

    PubMed 

    Google Scholar
     

  • Hirotsu, C., Tufik, S. & Andersen, M. L. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions. Sleep Sci. 8, 143–152 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. et al. Effect of weekend catch-up sleep on high-sensitivity C-reactive protein levels according to bedtime inconsistency: A population-based cross-sectional study. Sci. Rep. 12, 21619 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suarez, E. C. & Sundy, J. S. The cortisol:C-reactive protein ratio and negative affect reactivity in depressed adults. Health Psychol. 36, 852–862 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharpley, C. F., Bitsika, V., McMillan, M. E., Jesulola, E. & Agnew, L. L. The association between cortisol:C-reactive protein ratio and depressive fatigue is a function of CRP rather than cortisol. NDT 15, 2467–2475 (2019).

    CAS 

    Google Scholar
     

  • Yamazaki, E. M. et al. Cortisol and C-reactive protein vary during sleep loss and recovery but are not markers of neurobehavioral resilience. Front. Physiol. 12, 782860 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slavin, J. L. Dietary fiber: Classification, chemical analyses, and food sources. J. Am. Dietet. Assoc. 87, 1164–1168 (1987).

    CAS 

    Google Scholar
     

  • Sajnaga, E. et al. Response of murine gut microbiota to a prebiotic based on oligosaccharides derived via hydrolysis of fungal α-(1→3)-d-glucan: Preclinical trial study on mice. Food Chem. 417, 135928 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Penumutchu, S., Korry, B. J., Hewlett, K. & Belenky, P. Fiber supplementation protects from antibiotic-induced gut microbiome dysbiosis by modulating gut redox potential. Nat. Commun. 14, 5161 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aljuraiban, G. S. et al. Types of fiber and gut microbiota composition and diversity among Arab females. Saudi J. Biol. Sci. 30, 103767 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peterson, C. T. et al. Prebiotic potential of herbal medicines used in digestive health and disease. J. Altern. Complement. Med. 24, 656–665 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pilkington, L. I., Wagoner, J., Kline, T., Polyak, S. J. & Barker, D. 1,4-Benzodioxane Lignans: An efficient, asymmetric synthesis of flavonolignans and study of neolignan cytotoxicity and antiviral profiles. J. Nat. Prod. 81, 2630–2637 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Lněničková, K. et al. Metabolic profiling of silymarin constituents in urine and feces of healthy volunteers: A 90-day study. J. Funct. Foods 100, 105391 (2023).


    Google Scholar
     

  • Wang, H. et al. Weight loss promotion in individuals with obesity through gut microbiota alterations with a multiphase modified ketogenic diet. Nutrients 15, 4163 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, X. et al. Aryl hydrocarbon receptor utilises cellular zinc signals to maintain the gut epithelial barrier. Nat. Commun. 14, 5431 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, R., Huang, J., Wang, Z., Chen, Y. & Dong, Y. Trace element selenium effectively alleviates intestinal diseases. IJMS 22, 11708 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner-Skacel, J. et al. Sleep and microbiome in psychiatric diseases. Nutrients 12, 2198 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shkoporov, A. N. et al. Alistipes inops sp. nov. and Coprobacter secundus sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 65, 4580–4588 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. MIG/CXCL9 exacerbates the progression of metabolic-associated fatty liver disease by disrupting Treg/Th17 balance. Exp. Cell Res. 407, 112801 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, L., Tang, C., Li, X. & Feng, F. IL-6/IL-10 mRNA expression ratio in tumor tissues predicts prognosis in gastric cancer patients without distant metastasis. Sci. Rep. 12, 19427 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodward, E. A., Prêle, C. M., Nicholson, S. E., Kolesnik, T. B. & Hart, P. H. The anti-inflammatory effects of interleukin-4 are not mediated by suppressor of cytokine signalling-1 (SOCS1). Immunology 131, 118–127 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berkhout, M. D., Plugge, C. M. & Belzer, C. How microbial glycosyl hydrolase activity in the gut mucosa initiates microbial cross-feeding. Glycobiology 32, 182–200 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339-1353.e21 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zafar, H. & Saier, M. H. Gut Bacteroides species in health and disease. Gut Microbes 13, 1848158 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prasoodanan, P. K. et al. Western and non-western gut microbiomes reveal new roles of Prevotella in carbohydrate metabolism and mouth–gut axis. npj Biofilms Microbiomes 7, 77 (2021).


    Google Scholar
     

  • Pan, L. et al. Effects of several flavonoids on human gut microbiota and its metabolism by in vitro simulated fermentation. Front. Microbiol. 14, 1092729 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Precup, G. & Vodnar, D.-C. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: A comprehensive literature review. Br. J. Nutr. 122, 131–140 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • López-Almela, I. et al. Bacteroides uniformis combined with fiber amplifies metabolic and immune benefits in obese mice. Gut Microbes 13, 1–20 (2021).

    PubMed 

    Google Scholar
     

  • Dehoux, P. et al. Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants. BMC Genom. 17, 819 (2016).


    Google Scholar
     

  • Nehmi-Filho, V. et al. Novel nutraceutical supplements with yeast β-glucan, prebiotics, minerals, and Silybum marianum (silymarin) ameliorate obesity-related metabolic and clinical parameters: A double-blind randomized trial. Front. Endocrinol. 13, 1089938 (2023).


    Google Scholar
     

  • Schulz, K. F., Altman, D. G. & Moher, D. CCoOrresNpoSndOenRceT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials (2010).

  • European Food Safety Authority (EFSA). Dietary Reference Values for nutrients Summary report. EFS 14, e15121 (2017).


    Google Scholar
     

  • Vickers, A. Why use placebos in clinical trials? A narrative review of the methodological literature. J. Clin. Epidemiol. 53, 157–161 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Zaman, S. A. & Sarbini, S. R. The potential of resistant starch as a prebiotic. Crit. Rev. Biotechnol. https://doi.org/10.3109/07388551.2014.993590 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kadyan, S. et al. Resistant starches from dietary pulses modulate the gut metabolome in association with microbiome in a humanized murine model of ageing. Sci. Rep. 13, 10566 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Resistant starch and the gut microbiome: Exploring beneficial interactions and dietary impacts. Food Chem. X 21, 101118 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moraïs, S. et al. Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans. Science 383, eadj9223 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, F. et al. Dietary cellulose induces anti-inflammatory immunity and transcriptional programs via maturation of the intestinal microbiota. Gut Microbes 12, 1829962 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. et al. Dietary cellulose prevents gut inflammation by modulating lipid metabolism and gut microbiota. Gut Microbes 11, 944–961 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calgaro, M. et al. Metabarcoding analysis of gut microbiota of healthy individuals reveals impact of probiotic and maltodextrin consumption. Benef. Microbes 12, 121–136 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Hu, J. et al. High-amylose corn starch regulated gut microbiota and serum bile acids in high-fat diet-induced obese mice. IJMS 23, 5905 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almutairi, R., Basson, A. R., Wearsh, P., Cominelli, F. & Rodriguez-Palacios, A. Validity of food additive maltodextrin as placebo and effects on human gut physiology: Systematic review of placebo-controlled clinical trials. Eur. J. Nutr. 61, 2853–2871 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsudo, S. et al. Questionario Internacional De Ativi Dade Fisica (I PAQ)

  • Falavigna, A. et al. Consistency and reliability of the Brazilian Portuguese version of the Mini-Sleep Questionnaire in undergraduate students. Sleep Breath 15, 351–355 (2011).

    PubMed 

    Google Scholar
     

  • Bertolazi, A. N. et al. Portuguese-language version of the Epworth sleepiness scale: Validation for use in Brazil. J. Bras. Pneumol. 35, 877–883 (2009).

    PubMed 

    Google Scholar
     

  • da Silva, C. F. et al. The Portuguese version of the Horne and Ostberg morningnesseveningness questionnaire: Its role in education and psychology. Rev. Psicol. Educ. 1, 39–50 (2002).


    Google Scholar
     

  • Esch, L. V., Oudsten, B. L. D. & Vries, J. D. The World Health Organization Quality of Life Instrument-Short Form (WHOQOL-BREF) in women with breast problems. Int. J. Clin. Health Psychol. 11, 5–22 (2011).


    Google Scholar
     

  • Rohlfs, I. C. P. D. M. et al. A Escala de Humor de Brunel (Brums): Instrumento para detecção precoce da síndrome do excesso de treinamento. Rev Bras Med Esporte 14, 176–181 (2008).


    Google Scholar
     

  • Ribeiro, R. M. et al. An alternative storage method for characterization of the intestinal microbiota through next generation sequencing. Rev. Inst. Med. trop. S. Paulo 60, 77 (2018).


    Google Scholar
     

  • Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).


    Google Scholar
     

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandal, S. et al. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).

    PubMed 

    Google Scholar
     

  • Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    SUBSCRIBE TO OUR NEWSLETTER

    Get our latest downloads and information first.
    Complete the form below to subscribe to our weekly newsletter.


    100% secure your website.